3.331 \(\int \sec ^n(e+f x) (a+a \sec (e+f x))^m \, dx\)

Optimal. Leaf size=88 \[ \frac{2^{m+\frac{1}{2}} \tan (e+f x) (\sec (e+f x)+1)^{-m-\frac{1}{2}} (a \sec (e+f x)+a)^m F_1\left (\frac{1}{2};1-n,\frac{1}{2}-m;\frac{3}{2};1-\sec (e+f x),\frac{1}{2} (1-\sec (e+f x))\right )}{f} \]

[Out]

(2^(1/2 + m)*AppellF1[1/2, 1 - n, 1/2 - m, 3/2, 1 - Sec[e + f*x], (1 - Sec[e + f*x])/2]*(1 + Sec[e + f*x])^(-1
/2 - m)*(a + a*Sec[e + f*x])^m*Tan[e + f*x])/f

________________________________________________________________________________________

Rubi [A]  time = 0.109332, antiderivative size = 88, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3828, 3825, 133} \[ \frac{2^{m+\frac{1}{2}} \tan (e+f x) (\sec (e+f x)+1)^{-m-\frac{1}{2}} (a \sec (e+f x)+a)^m F_1\left (\frac{1}{2};1-n,\frac{1}{2}-m;\frac{3}{2};1-\sec (e+f x),\frac{1}{2} (1-\sec (e+f x))\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^n*(a + a*Sec[e + f*x])^m,x]

[Out]

(2^(1/2 + m)*AppellF1[1/2, 1 - n, 1/2 - m, 3/2, 1 - Sec[e + f*x], (1 - Sec[e + f*x])/2]*(1 + Sec[e + f*x])^(-1
/2 - m)*(a + a*Sec[e + f*x])^m*Tan[e + f*x])/f

Rule 3828

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^In
tPart[m]*(a + b*Csc[e + f*x])^FracPart[m])/(1 + (b*Csc[e + f*x])/a)^FracPart[m], Int[(1 + (b*Csc[e + f*x])/a)^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 3825

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Dist[(((a*
d)/b)^n*Cot[e + f*x])/(a^(n - 2)*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((a - x)^(n -
 1)*(2*a - x)^(m - 1/2))/Sqrt[x], x], x, a - b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2
 - b^2, 0] &&  !IntegerQ[m] && GtQ[a, 0] &&  !IntegerQ[n] && GtQ[(a*d)/b, 0]

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rubi steps

\begin{align*} \int \sec ^n(e+f x) (a+a \sec (e+f x))^m \, dx &=\left ((1+\sec (e+f x))^{-m} (a+a \sec (e+f x))^m\right ) \int \sec ^n(e+f x) (1+\sec (e+f x))^m \, dx\\ &=\frac{\left ((1+\sec (e+f x))^{-\frac{1}{2}-m} (a+a \sec (e+f x))^m \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{(1-x)^{-1+n} (2-x)^{-\frac{1}{2}+m}}{\sqrt{x}} \, dx,x,1-\sec (e+f x)\right )}{f \sqrt{1-\sec (e+f x)}}\\ &=\frac{2^{\frac{1}{2}+m} F_1\left (\frac{1}{2};1-n,\frac{1}{2}-m;\frac{3}{2};1-\sec (e+f x),\frac{1}{2} (1-\sec (e+f x))\right ) (1+\sec (e+f x))^{-\frac{1}{2}-m} (a+a \sec (e+f x))^m \tan (e+f x)}{f}\\ \end{align*}

Mathematica [B]  time = 6.24224, size = 2248, normalized size = 25.55 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[e + f*x]^n*(a + a*Sec[e + f*x])^m,x]

[Out]

(3*2^(1 + m)*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*(Sec[(e + f*x)/2]^2)^(-
1 + n)*Sec[e + f*x]^n*(Cos[(e + f*x)/2]^2*Sec[e + f*x])^(m + n)*(a*(1 + Sec[e + f*x]))^m*Tan[(e + f*x)/2])/(f*
(3*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + 2*((-1 + n)*AppellF1[3/2, m + n
, 2 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + (m + n)*AppellF1[3/2, 1 + m + n, 1 - n, 5/2, Tan[(e +
 f*x)/2]^2, -Tan[(e + f*x)/2]^2])*Tan[(e + f*x)/2]^2)*((3*2^m*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2
]^2, -Tan[(e + f*x)/2]^2]*(Sec[(e + f*x)/2]^2)^n*(Cos[(e + f*x)/2]^2*Sec[e + f*x])^(m + n))/(3*AppellF1[1/2, m
 + n, 1 - n, 3/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + 2*((-1 + n)*AppellF1[3/2, m + n, 2 - n, 5/2, Tan[
(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + (m + n)*AppellF1[3/2, 1 + m + n, 1 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(
e + f*x)/2]^2])*Tan[(e + f*x)/2]^2) + (3*2^(1 + m)*(-1 + n)*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2]^
2, -Tan[(e + f*x)/2]^2]*(Sec[(e + f*x)/2]^2)^(-1 + n)*(Cos[(e + f*x)/2]^2*Sec[e + f*x])^(m + n)*Tan[(e + f*x)/
2]^2)/(3*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + 2*((-1 + n)*AppellF1[3/2,
 m + n, 2 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + (m + n)*AppellF1[3/2, 1 + m + n, 1 - n, 5/2, Ta
n[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*Tan[(e + f*x)/2]^2) + (3*2^(1 + m)*(Sec[(e + f*x)/2]^2)^(-1 + n)*(Cos[
(e + f*x)/2]^2*Sec[e + f*x])^(m + n)*Tan[(e + f*x)/2]*(-((1 - n)*AppellF1[3/2, m + n, 2 - n, 5/2, Tan[(e + f*x
)/2]^2, -Tan[(e + f*x)/2]^2]*Sec[(e + f*x)/2]^2*Tan[(e + f*x)/2])/3 + ((m + n)*AppellF1[3/2, 1 + m + n, 1 - n,
 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Sec[(e + f*x)/2]^2*Tan[(e + f*x)/2])/3))/(3*AppellF1[1/2, m + n
, 1 - n, 3/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + 2*((-1 + n)*AppellF1[3/2, m + n, 2 - n, 5/2, Tan[(e +
 f*x)/2]^2, -Tan[(e + f*x)/2]^2] + (m + n)*AppellF1[3/2, 1 + m + n, 1 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e +
f*x)/2]^2])*Tan[(e + f*x)/2]^2) - (3*2^(1 + m)*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2]^2, -Tan[(e +
f*x)/2]^2]*(Sec[(e + f*x)/2]^2)^(-1 + n)*(Cos[(e + f*x)/2]^2*Sec[e + f*x])^(m + n)*Tan[(e + f*x)/2]*(2*((-1 +
n)*AppellF1[3/2, m + n, 2 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + (m + n)*AppellF1[3/2, 1 + m + n
, 1 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*Sec[(e + f*x)/2]^2*Tan[(e + f*x)/2] + 3*(-((1 - n)*App
ellF1[3/2, m + n, 2 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Sec[(e + f*x)/2]^2*Tan[(e + f*x)/2])/3
+ ((m + n)*AppellF1[3/2, 1 + m + n, 1 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Sec[(e + f*x)/2]^2*Ta
n[(e + f*x)/2])/3) + 2*Tan[(e + f*x)/2]^2*((-1 + n)*((-3*(2 - n)*AppellF1[5/2, m + n, 3 - n, 7/2, Tan[(e + f*x
)/2]^2, -Tan[(e + f*x)/2]^2]*Sec[(e + f*x)/2]^2*Tan[(e + f*x)/2])/5 + (3*(m + n)*AppellF1[5/2, 1 + m + n, 2 -
n, 7/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Sec[(e + f*x)/2]^2*Tan[(e + f*x)/2])/5) + (m + n)*((-3*(1 - n
)*AppellF1[5/2, 1 + m + n, 2 - n, 7/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Sec[(e + f*x)/2]^2*Tan[(e + f*
x)/2])/5 + (3*(1 + m + n)*AppellF1[5/2, 2 + m + n, 1 - n, 7/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*Sec[(e
 + f*x)/2]^2*Tan[(e + f*x)/2])/5))))/(3*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]
^2] + 2*((-1 + n)*AppellF1[3/2, m + n, 2 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] + (m + n)*AppellF1
[3/2, 1 + m + n, 1 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*Tan[(e + f*x)/2]^2)^2 + (3*2^(1 + m)*(m
 + n)*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*(Sec[(e + f*x)/2]^2)^(-1 + n)*
(Cos[(e + f*x)/2]^2*Sec[e + f*x])^(-1 + m + n)*Tan[(e + f*x)/2]*(-(Cos[(e + f*x)/2]*Sec[e + f*x]*Sin[(e + f*x)
/2]) + Cos[(e + f*x)/2]^2*Sec[e + f*x]*Tan[e + f*x]))/(3*AppellF1[1/2, m + n, 1 - n, 3/2, Tan[(e + f*x)/2]^2,
-Tan[(e + f*x)/2]^2] + 2*((-1 + n)*AppellF1[3/2, m + n, 2 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2] +
 (m + n)*AppellF1[3/2, 1 + m + n, 1 - n, 5/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2])*Tan[(e + f*x)/2]^2)))

________________________________________________________________________________________

Maple [F]  time = 0.721, size = 0, normalized size = 0. \begin{align*} \int \left ( \sec \left ( fx+e \right ) \right ) ^{n} \left ( a+a\sec \left ( fx+e \right ) \right ) ^{m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^n*(a+a*sec(f*x+e))^m,x)

[Out]

int(sec(f*x+e)^n*(a+a*sec(f*x+e))^m,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (f x + e\right ) + a\right )}^{m} \sec \left (f x + e\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^n*(a+a*sec(f*x+e))^m,x, algorithm="maxima")

[Out]

integrate((a*sec(f*x + e) + a)^m*sec(f*x + e)^n, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \sec \left (f x + e\right ) + a\right )}^{m} \sec \left (f x + e\right )^{n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^n*(a+a*sec(f*x+e))^m,x, algorithm="fricas")

[Out]

integral((a*sec(f*x + e) + a)^m*sec(f*x + e)^n, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \left (\sec{\left (e + f x \right )} + 1\right )\right )^{m} \sec ^{n}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**n*(a+a*sec(f*x+e))**m,x)

[Out]

Integral((a*(sec(e + f*x) + 1))**m*sec(e + f*x)**n, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (f x + e\right ) + a\right )}^{m} \sec \left (f x + e\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^n*(a+a*sec(f*x+e))^m,x, algorithm="giac")

[Out]

integrate((a*sec(f*x + e) + a)^m*sec(f*x + e)^n, x)